

PRESENTATION PLAN

1. Introduction
2. What is a cellular automaton?

$$
y=m x+b
$$

3. Our research: the Rule 60 automaton

1.INTRODUCTION

December 2023
$x+2$
$y=m x+b$

2. What is a cellular automaton?

A cellular automaton can be seen as a series of cells evolving according to a set of defined rules, thus giving rise to a new generation of cells.

Cell evolution rules are often defined in terms of the cell's neighbors.

2. What IS A CELLULAR AUTOMATON?

The starting line consists of one black square and the others are white.
rule 60

\square	$\square \square$										
\square	\square	\square	\square	\square	\square						
0	0	1	1	1	1	0	0				

$y=m x+b$

3. OUR RESEARCH: THE RULE 60 AUTOMATON

Conjectures:

- A black column is formed below the initial black square To its left, all the squares are white
- Lines 2, 4, 8, 16, etc. have "black lines".
- The initial triangle is copied in duplicate below, then the new pattern is itself copied in duplicate and so on to infinity.

3. OUR RESEARCH: THE RULE 60 AUTOMATON

Notations

For any automaton square, with ($\mathrm{i} \in \mathbb{Z}$ and $\mathrm{j} \in \mathbb{N}^{*}$) :

- x : designates an automaton cell
- i : column number
- j : line number

- If $x(i, j)=0$, then the square is white.
- If $x(i, j)=1$, then the square is black.

3. OUR RESEARCH: THE RULE 60 AUTOMATON

A few lemmas

Lemma 1: There is a basic pattern that repeats itself regularly.

Lemma 2: For each new line, the number of squares in the figure increases by one.

Lemma 3: if $i \geq j$ then $x(i ; j)=0$
Lemma 4: if $j=2^{\wedge} n, n \in \mathbb{N}, N j=j$.

3. DUR RESEARCH: the Rule 60 automaton

First proof

Column $i=0$ is always black

Proof by induction

- base case
- induction step
- conclusion

3. OUR RESEARCH: THE RULE 60 AUTOMATON

A second proof

From the first to the second line:

3 white squares give a white square (000 => 0)
2 white squares and a black square on the right give a white square (001 => 0)

For the following lines :
We can see that a column of black squares is formed below the initial black square, so the same rules apply:
3 white squares give a white square (000 => 0)
2 white squares and a black square on the right give a white square (001 => 0)

3. OUR RESEARCH: THE RULE 60 AUTOMATON

Method for determining the color of a square by knowing its coordinates

Our ${ }^{\circ}$ python code

```
from math import*
i= int(input("colonne :"))
j=int(input("ligne :"))
def x(i,j)
    if i>=j or i<0 or (i==1 and j==3)
    print("blanc")
    elif i==0:
    print("noir")
    elif j==i+1 or j==4
        print("noir")
    else:
        n=0
        a=0
        while j > 4:
            print("blanc")
                print(
            while 2**n<=j
                n=n+1
            a=2**(n-1)
            j=j-a
            if i>=j and i<=a:
                print("blanc")
                return
            elif i>a:
                i=i-a
            if i>=j
            print("blanc")
            elif i==1 and j===3:
            print("blanc")
            else:
            print("noir")
x(i,j)
```


\#demande de la colonne

 \#demande de la ligne\# définition de l'exterieur \# du triangle, de la colonne \# 0 et du motif initial
\# si on n'est ni dans le motif \# ni à l'exterieur on rentre ic
\# tant qu'on n'est pas dans le \# motif initial
\# définition des puissances inf \# et sup
\# si dans le grand triangle \# blanc
\# redéfinition du i
\# une fois sorti de la boucle
\# étude du motif initial

